23 research outputs found

    Gas-liquid critical parameters of asymmetric models of ionic fluids

    Full text link
    The effects of size and charge asymmetry on the gas-liquid critical parameters of a primitive model (PM) of ionic fluids are studied within the framework of the statistical field theory based on the collective variables method. Recently, this approach has enabled us to obtain the correct trends of the both critical parameters of the equisize charge-asymmetric PM without assuming ionic association. In this paper we focus on the general case of an asymmetric PM characterized by the two parameters: hard-sphere diameter-, λ=σ+/σ−\lambda=\sigma_{+}/\sigma_{-} and charge, z=q+/∣q−∣z=q_{+}/|q_{-}|, ratios of the two ionic species. We derive an explicit expression for the chemical potential conjugate to the order parameter which includes the effects of correlations up to the third order. Based on this expression we consider the three versions of PM: a monovalent size-asymmetric PM (λ≠1\lambda\neq 1, z=1z=1), an equisize charge-asymmetric PM (λ=1\lambda=1, z≠1z\neq 1) and a size- and charge-asymmetric PM (λ≠1\lambda\neq 1, z=2z=2). Similar to simulations, our theory predicts that the critical temperature and the critical density decrease with the increase of size asymmetry. Regarding the effects of charge asymmetry, we obtain the correct trend of the critical temperature with zz, while the trend of the critical density obtained in this approximation is inconsistent with simulations, as well as with our previous results found in the higher-order approximation. We expect that the consideration of the higher-order correlations will lead to the correct trend of the critical density with charge asymmetry.Comment: 23 pages, 6 figure

    Spatial inhomogeneities in ionic liquids, charged proteins and charge stabilized colloids from collective variables theory

    Full text link
    Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model (PM) of ionic systems with respect to periodic ordering using the collective variables based theory. We extend previous studies [A. Ciach et al., Phys. Rev.E \textbf{75}, 051505 (2007)] in several ways. First, we employ a non-local approximation for the reference hard-sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the uniform case. Second, we use the Weeks-Chandler-Anderson regularization scheme for the Coulomb potential inside the hard core. We determine the relevant order parameter connected with the periodic ordering and analyze the character of the dominant fluctuations along the λ\lambda-lines. We show that the above-mentioned modifications produce large quantitative and partly qualitative changes in the phase diagrams obtained previously. We discuss possible scenarios of the periodic ordering for the whole range of size- and charge ratios of the two ionic species, covering electrolytes, ionic liquids, charged globular proteins or nanoparticles in aqueous solutions and charge-stabilized colloids

    Gas-liquid critical point in ionic fluids

    Full text link
    Based on the method of collective variables we develop the statistical field theory for the study of a simple charge-asymmetric 1:z1:z primitive model (SPM). It is shown that the well-known approximations for the free energy, in particular DHLL and ORPA, can be obtained within the framework of this theory. In order to study the gas-liquid critical point of SPM we propose the method for the calculation of chemical potential conjugate to the total number density which allows us to take into account the higher order fluctuation effects. As a result, the gas-liquid phase diagrams are calculated for z=2−4z=2-4. The results demonstrate the qualitative agreement with MC simulation data: critical temperature decreases when zz increases and critical density increases rapidly with zz.Comment: 18 pages, 1 figur

    Field-theoretic description of ionic crystallization in the restricted primitive model

    Full text link
    Effects of charge-density fluctuations on a phase behavior of the restricted primitive model (RPM) are studied within a field-theoretic formalism. We focus on a λ\lambda-line of continuous transitions between charge-ordered and charge-disordered phases that is observed in several mean-field (MF) theories, but is absent in simulation results. In our study the RPM is reduced to a ϕ6\phi^6 theory, and a fluctuation contribution to a grand thermodynamic potential is obtained by generalizing the Brazovskii approach. We find that in a presence of fluctuations the λ\lambda-line disappears. Instead, a fluctuation-induced first-order transition to a charge-ordered phase appears in the same region of a phase diagram, where the liquid -- ionic-crystal transition is obtained in simulations. Our results indicate that the charge-ordered phase should be identified with an ionic crystal.Comment: 31 pages, 10 figure

    Field theory for size- and charge asymmetric primitive model of electrolytes. Mean-field stability analysis and pretransitional effects

    Full text link
    The primitive model of ionic systems is investigated within a field-theoretic description for the whole range of size-, \lambda, and charge, Z, ratios of the two ionic species. Two order parameters (OP) are identified, and their relations to physically relevant quantities are described for various values of \lambda and Z. Instabilities of the disordered phase associated with the two OP's are determined in the mean-field approximation. A gas-liquid separation occurs for any Z and \lambda different from 1. In addition, an instability with respect to various types of periodic ordering of the two kinds of ions is found

    Ab initio study of the vapour-liquid critical point of a symmetrical binary fluid mixture

    Full text link
    A microscopic approach to the investigation of the behaviour of a symmetrical binary fluid mixture in the vicinity of the vapour-liquid critical point is proposed. It is shown that the problem can be reduced to the calculation of the partition function of a 3D Ising model in an external field. For a square-well symmetrical binary mixture we calculate the parameters of the critical point as functions of the microscopic parameter r measuring the relative strength of interactions between the particles of dissimilar and similar species. The calculations are performed at intermediate (λ=1.5\lambda=1.5) and moderately long (λ=2.0\lambda=2.0) intermolecular potential ranges. The obtained results agree well with the ones of computer simulations.Comment: 14 pages, Latex2e, 5 eps-figures included, submitted to J.Phys:Cond.Ma
    corecore